skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Shafiq, Zubair"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Adblocking relies on filter lists, which are manually curated and maintained by a community of filter list authors. Filter list curation is a laborious process that does not scale well to a large number of sites or over time. In this article, we introduce AutoFR, a reinforcement learning framework to fully automate the process of filter rule creation and evaluation for sites of interest. We design an algorithm based on multi-arm bandits to generate filter rules that block ads while controlling the trade-off between blocking ads and avoiding visual breakage. We test AutoFR on thousands of sites and show that it is efficient: It takes only a few minutes to generate filter rules for a site of interest. AutoFR is effective: It optimizes filter rules for a particular site that can block 86% of the ads, as compared to 87% by EasyList, while achieving comparable visual breakage. Using AutoFR as a building block, we devise three methodologies that generate filter rules across sites based on: (1) a modified version of AutoFR, (2) rule popularity, and (3) site similarity. We conduct an in-depth comparative analysis of these approaches by considering their effectiveness, efficiency, and maintainability. We demonstrate that some of them can generalize well to new sites in both controlled and live settings. We envision that AutoFR can assist the adblocking community in automatically generating and updating filter rules at scale. 
    more » « less
    Free, publicly-accessible full text available February 28, 2026
  2. Adblocking relies on filter lists, which are manually curated and maintained by a community of filter list authors. Filter list curation is a laborious process that does not scale well to a large number of sites or over time. In this paper, we introduce AutoFR, a reinforcement learning framework to fully automate the process of filter rule creation and evaluation for sites of interest. We design an algorithm based on multi-arm bandits to generate filter rules that block ads while controlling the trade-off between blocking ads and avoiding visual breakage. We test AutoFR on thousands of sites and we show that it is efficient: it takes only a few minutes to generate filter rules for a site of interest. AutoFR is effective: it generates filter rules that can block 86% of the ads, as compared to 87% by EasyList, while achieving comparable visual breakage. Furthermore, AutoFR generates filter rules that generalize well to new sites. We envision that AutoFR can assist the adblocking community in filter rule generation at scale. 
    more » « less
  3. Adblocking relies on filter lists, which are manually curated and maintained by a community of filter list authors. Filter list curation is a laborious process that does not scale well to a large number of sites or over time. In this paper, we introduce AutoFR, a reinforcement learning framework to fully automate the process of filter rule creation and evaluation for sites of interest. We design an algorithm based on multi-arm ban- dits to generate filter rules that block ads while controlling the trade-off between blocking ads and avoiding visual breakage. We test AutoFR on thousands of sites and we show that it is efficient: it takes only a few minutes to generate filter rules for a site of interest. AutoFR is effective: it generates filter rules that can block 86% of the ads, as compared to 87% by EasyList, while achieving comparable visual breakage. Furthermore, AutoFR generates filter rules that generalize well to new sites. We envision that AutoFR can assist the adblocking community in filter rule generation at scale. 
    more » « less
  4. null (Ed.)
    The adblocking arms race has escalated over the last few years. An entire new ecosystem of circumvention (CV) services has recently emerged that aims to bypass adblockers by obfuscating site content, making it difficult for adblocking filter lists to distinguish between ads and functional content. In this paper, we investigate recent anti-circumvention efforts by the adblocking community that leverage custom filter lists. In particular, we analyze the anti-circumvention filter list (ACVL), which supports advanced filter rules with enriched syntax and capabilities designed specifically to counter circumvention. We show that keeping ACVL rules up-to-date requires expert list curators to continuously monitor sites known to employ CV services and to discover new such sites in the wild — both tasks require considerable manual effort. To help automate and scale ACVL curation, we develop CV-INSPECTOR, a machine learning approach for automatically detecting adblock circumvention using differential execution analysis. We show that CV-INSPECTOR achieves 93% accuracy in detecting sites that successfully circumvent adblockers. We deploy CV-INSPECTOR on top-20K sites to discover the sites that employ circumvention in the wild.We further apply CV-INSPECTOR to a list of sites that are known to utilize circumvention and are closely monitored by ACVL authors. We demonstrate that CV-INSPECTOR reduces the human labeling effort by 98%, which removes a major bottleneck for ACVL authors. Our work is the first large-scale study of the state of the adblock circumvention arms race, and makes an important step towards automating anti-CV efforts. 
    more » « less
  5. Online advertisers have been quite successful in circumventing traditional adblockers that rely on manually curated rules to detect ads. As a result, adblockers have started to use machine learning (ML) classifiers for more robust detection and blocking of ads. Among these, AdGraph which leverages rich contextual information to classify ads, is arguably, the state of the art ML-based adblocker. In this paper, we present a4, a tool that intelligently crafts adversarial ads to evade AdGraph. Unlike traditional adversarial examples in the computer vision domain that can perturb any pixels (i.e., unconstrained), adversarial ads generated by a4 are actionable in the sense that they preserve the application semantics of the web page. Through a series of experiments we show that a4 can bypass AdGraph about 81% of the time, which surpasses the state-of-the-art attack by a significant margin of 145.5%, with an overhead of <20% and perturbations that are visually imperceptible in the rendered webpage. We envision that a4’s framework can be used to potentially launch adversarial attacks against other ML-based web applications. 
    more » « less
  6. null (Ed.)